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Background Bayesian Statistics

Bayesian Statistics

Let y = (y1, . . . , yn)ᵀ denote the observed data and define P(n)
0 as the

true distribution generating y .

The model P(n)
0 is approximated using a parametric family of models

{P(n)
θ : θ ∈ Θ ⊆ Rdθ}

We wish to estimate θ via the posterior distribution:

π(θ|y) ∝ pn(y |θ)π(θ).

where π(θ) is the prior density and pn(y |θ) is the likelihood.

Chris Drovandi O’Bayes 2022 2 / 35



Background Markov Chain Monte Carlo

Markov Chain Monte Carlo

Construct ergodic Markov chain with invariant distribution π(θ|y)

A common MCMC algorithm is Metropolis Hastings (MH) MCMC,
where proposals θ∗ are accepted with probability

min

(
1,

pn(y |θ∗)π(θ∗)q(θ|θ∗)
pn(y |θ)π(θ)q(θ∗|θ)

)
,

where q(·) is the proposal density.

For complex models, pn(y |θ) may be intractable.
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Background Markov Chain Monte Carlo

Likelihood-free Inference

Likelihood-free methods approximate the posterior via model
simulations.

Two common methods are approximate Bayesian computation (ABC)
and Bayesian synthetic likelihood (BSL).

ABC and BSL often perform inference using summaries via the
function: Sn : Rn → Rd , d ≥ dθ. We denote Sn = Sn(y) when clear.

π(θ|Sn) ∝ gn(Sn|θ)π(θ).

ABC and BSL approximate gn(Sn|y) in different ways.
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Approximate Bayesian Computation Overview

Approximate Bayesian Computation

ABC1 approximates the likelihood by drawing m mock datasets
z1, . . . , zm ∼ P(n)

θ :

ĝε(Sn|θ) =
1
m

m∑
i=1

Kε[ρ{Sn(y),Sn(z i)}].

where ρ{Sn(y),Sn(zi)} is the distance function, Kε[·] is a kernel
weighting function and ε is the bandwidth or ABC tolerance.

Common choices are m = 1 and
Kε[ρ{Sn(y),Sn(z)}] = I[ρ{Sn(y),Sn(z) ≤ ε].

1
Sisson et al (2018). Handbook of ABC.
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Approximate Bayesian Computation Regression Adjustment

Regression Adjustment

Regression adjustment (see 1 for a review) aims to improve the ABC
approximation via the adjustment2:

θ̃i = θi − (Sn(zi)− Sn(y))>β̂,

where β̂ is estimated from the regression:

θi = α + (Sn(zi)− Sn(y)>β + ei .

More sophisticated regressions are possible1 (e.g. local linear
regression and neural networks).

1
Blum (2018). Chapter in Handbook of ABC.

2
Li and Fearnhead (2018). Biometrika.
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Approximate Bayesian Computation Limitations

Limitations of ABC

Inferences can be sensitive to ε and ρ.

Scales poorly with summary statistic dimension1.

Can be computationally inefficient.

Regression-adjusted ABC can perform poorly under misspecification2.

1Blum (2010). JASA.
2Frazier et al (2020). JRSS B.
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Approximate Bayesian Computation Theoretical Properties

Theoretical Properties of ABC

Under correct model specification and ε→ 0 at a "fast" rate ABC
delivers12:

Asymptotically normal posterior concentrating on θ0 with correct
coverage.
Asymptotically normal posterior mean with correct coverage.
Acceptance rate goes to 0.

Under correct model specification ABC regression adjustment3 does
not require ε→ 0.

1Frazier et al (2018). Biometrika.
2Li and Fearnhead (2018a). Biometrika.
3Li and Fearnhead (2018b). Biometrika.

Chris Drovandi O’Bayes 2022 8 / 35



Bayesian Synthetic Likelihood Overview

Bayesian Synthetic Likelihood

BSL12 approximates gn(·|θ) using a Gaussian likelihood

gA(Sn|θ) = N{Sn; bn(θ),Σn(θ)},

where bn(θ) and Σn(θ) denote the mean and variance of the model
summary statistic at θ.

We estimate bn(θ) and Σn(θ) from m independent model simulations:

bn(θ) =
1
m

m∑
i=1

Sn(z i), Σn(θ) =
1
m

m∑
i=1

[
Sn(z i)− bn(θ)

] [
Sn(z i)− bn(θ)

]>
,

1
Wood (2010). Nature.

2
Price et al (2018). JCGS.
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Bayesian Synthetic Likelihood Overview

Bayesian Synthetic Likelihood

The synthetic likelihood is then approximated as N{Sn; bn(θ),Σn(θ)}.

MH-MCMC BSL targets the following posterior:

π(θ | Sn) ∝ π(θ)gn(Sn | θ),

gn(Sn | θ) =∫
N{Sn; bn(θ),Σn(θ)}

m∏
i=1

dP(n)
θ {Sn(z i)}dSn(z1) . . . dSn(zm).

gn(Sn | θ) is the expectation of the estimated synthetic likelihood.
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Bayesian Synthetic Likelihood Theoretical Properties

Asymptotic Properties of BSL1 – Assumptions

Observed summaries satisfy a central limit theorem.

Define bn(θ) = E [Sn(z)|θ], require bn(θ) to be continuous over Θ, able
to identify θ0 and whose derivative has full column rank at θ0

In addition to the continuity of π(θ), we require the existence of a
certain prior moment.

Model summaries are sub-Gaussian (can be weakened).

1
Frazier et al (2022). JASA.
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Bayesian Synthetic Likelihood Theoretical Properties

Asymptotic Properties of BSL1 – Assumptions

Let ∆n(θ) be some covariance matrix estimator of summaries Sn(z).
Not necessarily the standard one.

We require that ∆n(θ) for large n is positive definite for θ sufficiently
close to θ0.

We require v2
n ∆n(θ) converges uniformly to ∆(θ), which needs to be

continuous and positive definite for θ sufficiently close to θ0.

1
Frazier et al (2022). JASA.
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Bayesian Synthetic Likelihood Theoretical Properties

Asymptotic Properties of BSL – Results

BSL posterior is asymptotically normal.

BSL posterior mean is asymptotically normal.

Above results depend on choice of covariance matrix (BSL = ABC
when using standard covariance estimator).

Above results satisfied for any m = Cbnγc, with C > 0, γ > 0.
Demonstrates that m does not strongly impact inferences.
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Bayesian Synthetic Likelihood Theoretical Properties

Asymptotic Properties of BSL – Computational
Efficiency

Based on a rejection sampler with a ‘good’ proposal.

BSL has a non-negligible acceptance rate asymptotically.

Similar computational efficient to regression adjusted ABC.
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Bayesian Synthetic Likelihood Misspecified Covariance

Misspecification of Covariance Matrix

Using a misspecified covariance matrix ∆n(θ) 6= Σn(θ) (e.g. shrinkage
estimator) may lead to computational gains.

But it can lead to invalid uncertainty quantification.

We develop an adjustment method1: Consider the adjusted sample

θA,q = θ̂ + Γ̂Ω̃1/2Γ̂−1/2(θq − θ̂), q = 1, . . . ,Q

θq is a sample based on misspecified covariance, (θ̂, Γ̂) is estimated
posterior mean/covariance and Ω̃ is an estimate of
var
{
∇θ log gn(Sn|θ̂)

}
.

1
Frazier et al (2022). JASA.
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Bayesian Synthetic Likelihood Misspecified Covariance

Misspecification of Covariance Matrix

Estimating Ω̃ when the model for y is correct.

1. For j = 1, . . . , J, draw S(j) ∼ P(n)

θ̂
.

2. Approximate g(j) = ∇θ log gn(S(j)|θ̂). We estimated this based on a
Gaussian process approximation of synthetic likelihood, trained on
samples around θ̂.
3. With ḡ = J−1∑J

j=1 g(j), return Ω̃ = 1
J−1

∑J
j=1(g(j) − ḡ)(g(j) − ḡ)ᵀ

Gives asymptotically valid frequentist inference about θ0.
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Bayesian Synthetic Likelihood Example

MA(2) Example

We consider the second order moving average model (MA(2)):

yt = et + θ1et−1 + θ2et−2,

for t = 1, . . . ,n, where et ∼ N(0,1), t = −1, . . . ,n, and n is the length
of time series. Prior is uniform over
−1 < θ2 < 1, θ1 + θ2 > −1, θ1 − θ2 < 1.

First 20 autocovariances as summaries.

We consider 100 datasets of size n = 104 simulated with true
parameters θ1 = 0.6 and θ2 = 0.2
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Bayesian Synthetic Likelihood Example

MA(2) Example – Results

method m mean ESS min ESS 90% tv dist time (hrs)
BSL 200 3000 240 91/89/88 0.22 1.4

BSL diag 200 5400 1500 98/88/85 0.60 1.4
BSL adj 200 - - 91/90/91 0.53 1.5

ABC - - - 96/99/96 0.34 5.9
ABC reg - - - 93/96/90 0.22 5.9

Table: Estimated coverage for credible intervals having nominal 90% credibility for
standard BSL, BSL with a diagonal covariance (BSL diag), BSL diag with an
adjustment (BSL adj), ABC and regression adjustment ABC (ABC reg) for
θ1/θ2/(θ1, θ2).
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BSL Under Misspecification SL Misspecification

Misspecification in Synthetic Likelihood

What does misspecification mean in the context of synthetic likelihood?

Define bn(θ) = E [Sn(z)|θ]. There does not exist any θ ∈ Θ such that
bn(θ) = b0 where b0 = E [Sn(y)].

That is, there is no θ that recovers the observed summary. Referred to
as incompatibility1.

For synthetic likelihood, we say that the model is incompatible if

lim
n→∞

inf
θ∈Θ
{bn(θ)− b0}ᵀ {nΣn(θ)}−1 {bn(θ)− b0} > 0. (1)

1
Marin et al (2014). JRSS B.
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BSL Under Misspecification Example

Consequences of Misspecification: Simple Example

Researcher believes the observed data y1:n = (y1, . . . , yn)ᵀ is
generated according to MA(1) model

yt = et + θet−1, t = 1, . . . ,n, (2)

Actual data generating process (DGP) evolves according to the
stochastic volatility (SV) model

yt = exp(ht/2)ut , ht = ω + ρht−1 + vtσv . (3)

Two summaries: variance and first autocovariance.
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BSL Under Misspecification Example

Simple Example

Under the MA(1) model we have b(θ) =
(
1 + θ2, θ

)ᵀ.

Under the DGP we have b0 =
(

exp
(

ω
1−ρ + 1

2
σ2

v
1−ρ2

)
, 0

)ᵀ
.

The unique minimum of ‖b(θ)− b0‖ is achieved at θ = 0, and we hope
our inferences concentrate on this value.
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BSL Under Misspecification Example

Results under Misspecification
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BSL Under Misspecification Tempering

Tempering does not help

Tempering, i.e. raising the likelihood to power α < 1 has often been to
robustify Bayesian inference to misspecification.

For α ≥ 0, the tempered synthetic likelihood:

gαn (Sn | θ) =

∫
N{Sn; bn(θ),Σn(θ)}α

m∏
i=1

dP(n)
θ {Sn(z i)}dSn(z1) . . . dSn(zm),

which yields the posterior distribution πα(θ | Sn) ∝ gαn (Sn | θ)π(θ).

This doesn’t help BSL...
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BSL Under Misspecification Tempering

Tempering does not help
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BSL Under Misspecification Theoretical Results

Consequences of Misspecification1: Theoretical
Results

Define:

Mn(θ) = n−1∂ log gn(Sn | θ)/∂θ.

Incompatibility can result in multiple roots of Mn(θ) = 0, producing
multimodality in the BSL posterior.

In this case, the BSL posterior is not asymptotically Gaussian, but
resembles a Gaussian density near the modes.

1
Frazier et al (2022). https://arxiv.org/abs/2104.03436.
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BSL Under Misspecification Theoretical Results

Consequences of Misspecification: Theoretical
Results

Even under misspecification, it is possible Mn(θ) = 0 has only a single
solution.

This results in Gaussian-like posterior concentration around the
pseudo-true value.

Overall, BSL and ABC have very different asymptotic behaviours under
misspecification.
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BSL Under Misspecification Robust BSL

BSL Adjustments for Misspecification

Two adjustments1 have been proposed for making BSL robust to
misspecification: mean adjustment and variance inflation.

The main idea is to introduce auxiliary variables to make an
incompatible model compatible again.

Here we focus on variance inflation.

1Frazier and Drovandi (2021). JCGS.
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BSL Under Misspecification Robust BSL

Variance Inflation

Variance inflation alters the covariance matrix of synthetic likelihood.

For Γ = (γ1, . . . , γd )′, define the regularized variance matrix
Σn(θ, Γ) = Σn(θ) + Σ

1/2
n (θ)diag{γ1, . . . , γd}Σ

1/2
n (θ).

Let

gn(Sn | θ, Γ) =

∫
N{Sn; bn(θ),Σn(θ, Γ)}

m∏
i=1

dP(n)
θ

{
Sn(z i)

}
dSn(z1) . . . dSn(zm)

denote the synthetic likelihood based on Σn(θ, Γ).
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BSL Under Misspecification Robust BSL

Variance Inflation

Γ ensures that ‖Σn(θ, Γ)−1/2{bn(θ)− Sn}‖ can be made small even if
there is no value in Θ where ‖bn(θ)− Sn‖ is small.

To regularise the new model, we impose a prior on Γ, π(Γ), consisting
of independent exponential densities.

The joint posterior is π(θ, Γ | Sn) ∝ π(θ)π(Γ)gn(Sn | θ, Γ), which we
sample with MCMC.
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BSL Under Misspecification Robust BSL

Variance Inflation – MCMC Sampling

Component-wise MCMC scheme1.

Update θ|γ using standard BSL Metropolis-Hastings.

Update each component of γ|θ using a slice sampler. Acceptance rate
of 1, no additional tuning.

We don’t seem to incur an additional penalty of sampling over a higher
dimensional space.

1Frazier and Drovandi (2021). JCGS.
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BSL Under Misspecification Robust BSL

Variance Inflation – Theoretical Properties

If the model is compatible, what behavior should we expect from the
R-BSL approach?

Under compatibility and other mild assumptions, we show1 that the
posterior for Γ converges to the prior.

Thus incompatibility can be detected by departures from the prior.

1Frazier and Drovandi (2021). JCGS.
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BSL Under Misspecification Robust BSL

Variance Inflation – Results
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BSL Under Misspecification BSL Extensions

Other BSL Extensions

Semi-parametric BSL – more robust to Gaussian assumption. An et al
(2020) STCO.

Whitening BSL – decorrelate summaries to make shrinkage
covariance more effective/accurate. Priddle et al (2022) JCGS.

Variational Bayes BSL – reduced model simulation at expensive of
parametric posterior assumption. Ong et al (2018) CSDA.

Software packages – BSL package in R, BSL functionality in ELFI
package in Python (coming soon). An et al (2022) Journal of Statistical
Software.
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Summary

Summary

BSL is an attractive method for likelihood-free inference:
Has good asymptotic properties under correct specification.
More computationally efficient than ABC and requires little tuning.
Extensions have been developed to handle model
misspecification.

Main limitations:
Requires stronger condition on distribution of summaries
compared to ABC.
Generally remains model simulation intensive.
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Summary
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